

#### HARNESSING THE POWER OF AI FOR EMERGENCY MANAGEMENT

SARAH K MILLER, PHD, CEM



### WHAT?

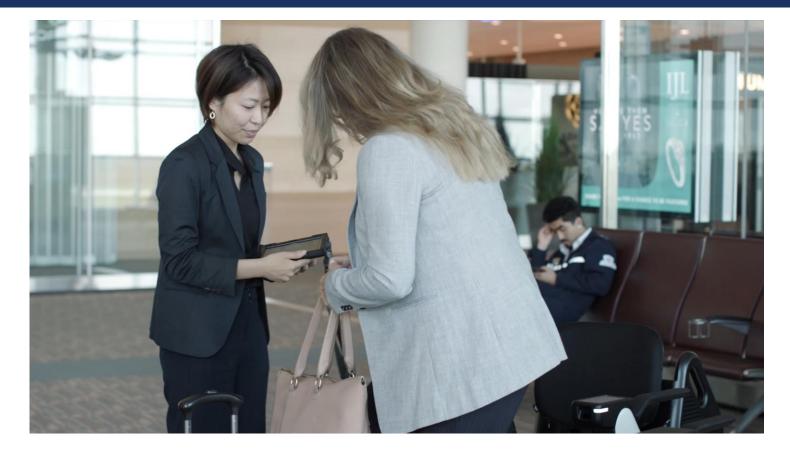
### A BRIEF HISTORY

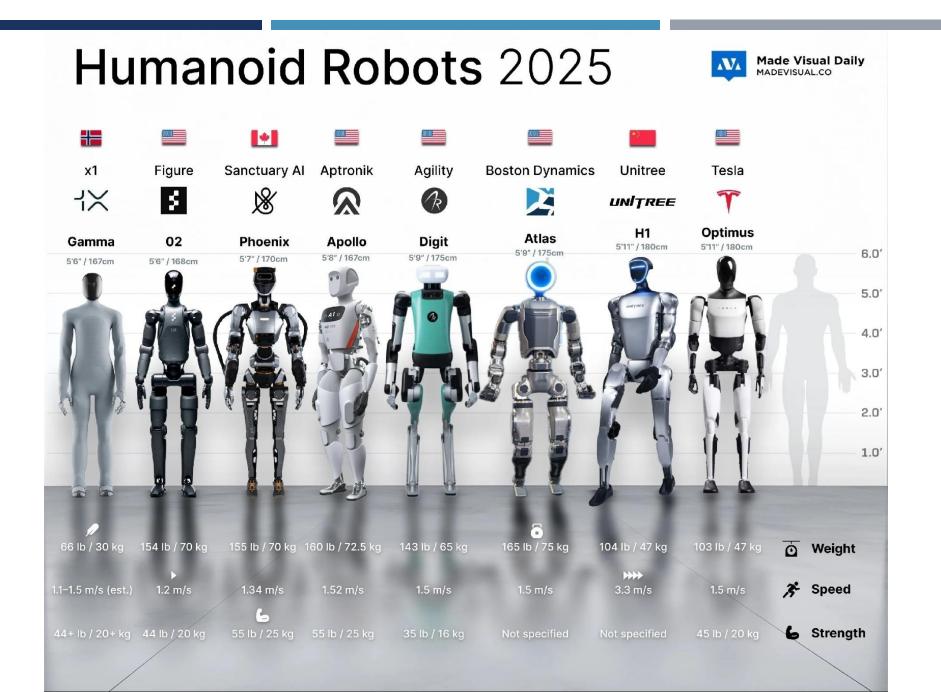
- I921: First use of the term robot in a Czech play
- I 929: First robot built in Japan
- I 950: Alan Turing published "Computer Machinery and Intelligence"
- I 952: First autonomous computer game developed (checkers)
- I 955: First use of the term artificial intelligence
- 1957-1973: maturation of AI, programming languages, industrial robots, expert systems, and bots developed
- I 979: First autonomous vehicle created
- 1980-1987: Lots of AI activity, including commercial use and the first driverless car
- I987-1993: Not a lot of forward momentum
- I 997: Deep Blue beats Kasparov at Chess.

- I 997: Dragon Systems releases speech recognition software
- 2002: Roomba released
- 2003: Spirit and Opportunity navigate Mars without human assistance
- 2006: Twitter, Facebook, Netflix begin using AI in advertising and marketing algorithms
- 2011: IBM Watson wins Jeopardy against two former champions
- 2011:Apple brings us Siri
- 2012-2019:Virtual assistants, search engines, deep learning, big data
- 2020: OpenAI beta tests GPT-3 to create code, poetry and other language-based tasks.
- 2021: OpenAI developed DALL-E, which could caption images



### **COMMON TERMS**


- LLM: Large Language Model. Pre-trained language models built on vast amounts of data. Designed for natural language processing.
- RAG: Retrieval-Augmented Generation. Providing an LLM with an authoritative knowledge base to pull from.
- Generative AI: Systems that can generate new content based on patterns in language.
- Hallucinations: Plausible generative AI outputs that are wrong on nonsensical.
- Synthetic Data: Artificially generated data used to train AI models.


### THE STATE OF AITODAY

- Rapid evolution
- Reactive Machines
  - Same input always returns the same output.
  - IBM's Deep Blue (chess playing), shopping/movie recommendations, etc.
- Limited Memory Machines
  - Imitates the brain.
  - Acts based on past and present but doesn't "learn" from the present.
  - Can be trained with additional data.
  - Self-driving cars, natural language processing, etc.
- Not self-aware and cannot understand the world around it.

### WHERE WE FIND AI RIGHT NOW

- E-commerce
- Healthcare
- Natural Language Processing
- Personalization
- Financial Services
- Robotics
- Autonomous Vehicles
- Social Media Monitoring
- Education
- Smart assistants
- And more







### SO WHAT?

#### PREDICTIVE AND DETECTIVE PROCESSES

Challenges:

Accuracy of information and ability to keep up with information flow

Al and Robotics Solutions:

- Weather Forecasting
  - Highly accurate and reliable
- Wildfires
  - Early detection. Robotic firefighting
- Supply Burn Rates
  - Can more easily account for supply chain issues
- Climate Change
  - Looks beyond past analysis and includes future forecast
- Others

### EMERGENCY PLANNING

- Challenges
  - Conflicting plans, lack of planning resources, full incorporation of available data

#### Solutions

- Locally hosted RAGs based on reputable LLMs
- Basic plan generation as an augment to existing staff
- Plan deconflicting based on directed queries
- Incorporation of demographic and other data



#### SHELTERING

Challenges:

- Managing overcrowding and ensuring accessibility for diverse populations.
- Al and Robotics Solutions:
- Al for Resource Optimization:
  - Predictive analytics to identify optimal shelter locations based on population density and disaster impact zones.
  - Real-time monitoring of shelter capacity and resource allocation using AI systems.
- Robotic Assistance:
  - Robots to assist in setting up shelters quickly and efficiently.
  - Automated systems for distributing essentials like bedding and hygiene supplies within shelters.



### FEEDING OPERATIONS

Challenges:

Large-scale food preparation and addressing dietary restrictions.

AI and Robotics Solutions:

- Al in Supply Chain Management:
  - Predictive models to forecast food demand based on population demographics and disaster severity.
  - Al-driven logistics to optimize food delivery routes.
- Robotic Food Preparation:
  - Robotic kitchens for rapid meal production tailored to dietary needs.
  - Autonomous food delivery systems within shelters or affected areas.

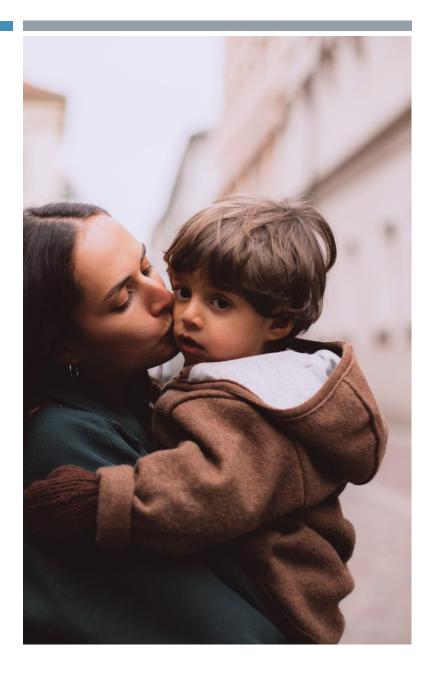
#### MEDICAL AND HEALTH SUPPORT

Challenges:

Limited medical personnel and facilities during disasters.

Al and Robotics Solutions:

- Al-Driven Health Monitoring:
  - Syndromic surveillance systems powered by AI to detect disease outbreaks in shelters.
  - Al tools for triaging patients by analyzing vital signs remotely.
- Robotic Medical Assistance:
  - Autonomous robots conducting initial triage in mass casualty events.
  - Robots delivering medical supplies or providing basic care to patients in shelters or disaster zones.


### **REUNIFICATION SERVICES**

#### Challenges:

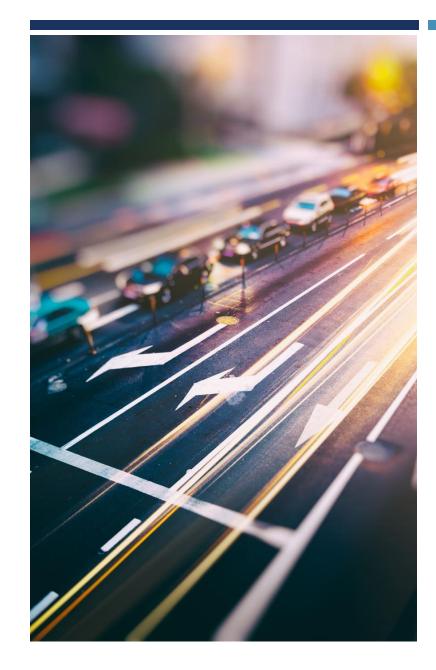
Tracking separated families or individuals during evacuations.

#### Al and Robotics Solutions:

- AI-Powered Tracking Systems:
  - Facial recognition integrated into registration systems for reunification purposes.
  - Al algorithms analyzing social media or other data sources to locate missing persons quickly.
- Robotic Support:
  - Robots assisting at reunification centers by guiding individuals through the process or providing emotional support.



### SUPPLY DISTRIBUTION


#### Challenges:

• Equitable distribution of resources across affected areas.

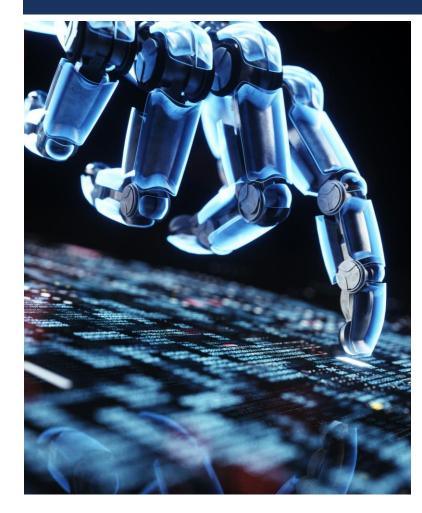
#### AI and Robotics Solutions:

- Al in Logistics Coordination:
  - Real-time tracking of supply chains to prevent bottlenecks.
  - Predictive analytics to anticipate shortages before they occur.
- Robotic Delivery Systems:
  - Drones or autonomous vehicles delivering supplies to remote or inaccessible locations.
  - Robots managing inventory at distribution hubs.





## TRANSPORTATION MANAGEMENT DURING EVACUATIONS


Challenges:

Coordinating transportation for diverse populations, including those with disabilities.

AI and Robotics Solutions:

- Al Traffic Management Systems:
  - Dynamic route optimization based on real-time traffic data.
  - Al-enabled systems identifying transportation needs for vulnerable populations.
- Autonomous Vehicles:
  - Self-driving buses or vans transporting evacuees safely.
  - Autonomous vehicles equipped for medical transport or pet evacuation.

### PUBLIC INFORMATION AND COMMUNICATION



Challenges:

- Disseminating accurate, timely, and accessible information to the public during emergencies.
- Overcoming barriers such as language differences, disabilities, and technological access limitations.
- Combatting mis/disinformation

Al and Robotics Solutions:

- AI Chatbots and Virtual Assistants:
  - Multilingual chatbots providing real-time updates on evacuation routes, shelter availability, and emergency resources.
- Robotic Communication Aids:
  - Robots deployed in public spaces to relay critical information dynamically through audio or visual displays.

## ETHICAL CONSIDERATIONS AND OTHER CHALLENGES

Challenges:

- Ensuring data privacy
- Ensuring agency information security is maintained.
- Addressing biases in AI algorithms that could affect equitable service delivery.
- Intense resource use (water, power)
- Balancing human oversight with autonomous robotic operations to maintain accountability.
- Ethical frameworks are evolving and figuring out the "right thing to do" can be challenging.



### NOW WHAT?

#### **IMPLEMENTATION ROADMAP**

#### Al Objectives & Strategy

| SHORT TERM<br><b>O-1 YEAR</b><br><b>OBJECTIVE</b><br>Al Adoption Accelerates  | Target Return<br>50%<br>Internal<br>understanding       | <ul> <li>KPIs</li> <li>75% AI adoption rate by personnel</li> <li>Reduce manual task completion time by 20%</li> <li>Reduce average response times by 15% from previous year</li> </ul>                              | <ul> <li>Strategies</li> <li>Conduct AI workshops and training sessions</li> <li>Implement AI-Powered tools and platforms</li> <li>Establish data sharing and integration within your agency and jurisdiction</li> </ul>                          |
|-------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               |                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   |
| MID TERM<br><b>1-2 YEARS</b><br><b>OBJECTIVE</b><br>Al Implementation Evolves | Target Return<br>65%<br>Private sector<br>engagements   | <ul> <li>KPIs</li> <li>Achieve an accuracy rate of 85% for<br/>Al-driven decision-making</li> <li>Increase engagements by 30%</li> <li>Enhance sustainable funding<br/>mechanisms for Al for 80% of costs</li> </ul> | <ul> <li>Strategies</li> <li>Integrate AI-Drive Decision-Making protocols</li> <li>Measure public engagement and awareness</li> <li>Expand AI training and education and establish<br/>an innovation hub with private sector partners</li> </ul>  |
|                                                                               |                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   |
| LONG TERM<br><b>3+ YEARS</b><br>OBJECTIVE<br>Al-Driven Excellence Emerges     | Target Return<br><b>85%</b><br>Established<br>solutions | <ul> <li>KPIs</li> <li>Secure 20+ additional partnerships</li> <li>Launch the first overarching EM<br/>Annual Report</li> <li>Secure 10+ members from diverse</li> </ul>                                             | <ul> <li>Strategies</li> <li>Rewrite all Emergency Management Plans<br/>integrating AI data, solutions, and partnerships</li> <li>Establish a PPP AI Center of Excellence</li> <li>Develop a jurisdictional AI Ethics Committee for EM</li> </ul> |
| A briten Excellence Emerges                                                   |                                                         | backgrounds for the committee                                                                                                                                                                                        |                                                                                                                                                                                                                                                   |

### CALL TO ACTION



#### **Advocacy for Ethical AI Policies**

Next Steps:

- Develop policy frameworks that outline ethical guidelines for using AI in emergency management, emphasizing transparency and equity.
- Host professional discussions on the implications of AI adoption, including bias mitigation and data privacy concerns.
- Advocate for funding at the local level to support ethical AI implementation in public agencies.

Immediate Post-Emergency Action:

• Conduct post-disaster audits using AI tools to ensure accountability in recovery efforts and equitable distribution of resources.



#### **Pilot Projects for Al**

Next Steps:

- Launch small-scale pilot projects within local agencies to test specific AI applications (e.g., damage assessment via drones or automated triage systems).
- Partner with private tech companies or academic institutions to co-develop solutions tailored for public administration needs.
- Share findings from pilot projects as case studies for broader adoption.

#### Immediate Post-Emergency Action:

• Use insights from pilot projects during the emergency response phase to refine recovery strategies and share lessons learned with other chapters.



#### **Community Engagement**

Next Steps:

- Develop citizen-facing apps powered by AI that provide real-time updates during emergencies (e.g., evacuation routes, shelter availability).
- Host workshops or town halls educating communities about how AI improves emergency preparedness and response efforts.
- Create multilingual communication tools using natural language processing (NLP) to ensure inclusivity during crises.

#### Immediate Post-Emergency Action:

 Use sentiment analysis tools powered by AI to gauge community satisfaction with recovery efforts and identify areas needing improvement.

### FUTURE TRENDS IN AI FOR EMERGENCY MANAGEMENT

#### **Generative AI for Emergency Communication and Decision Support**

- Next Steps:
  - Implement generative AI tools (e.g., ChatGPT-like systems) to draft emergency response plans, press releases, and public announcements.
  - Train public administrators to use generative AI for real-time decision-making during emergencies.
  - Develop templates for emergency communication that can be quickly customized using AI tools.
- Immediate Post-Emergency Action:
  - Use generative AI to analyze post-crisis data (e.g., citizen feedback, media reports) and identify gaps in the response.

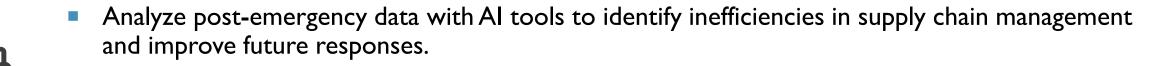


Leverage AI to create follow-up communication plans addressing community concerns and outlining recovery initiatives.

### FUTURE TRENDS IN AI FOR EMERGENCY MANAGEMENT

#### **Predictive Analytics for Proactive Risk Management**

- Next Steps:
  - Collaborate with local universities or data science firms to develop predictive models tailored to specific regional risks (e.g., flooding, earthquakes).
  - Integrate predictive analytics into public dashboards to provide real-time updates on potential hazards.
  - Use historical disaster data to refine forecasting models and improve accuracy over time.
- Immediate Post-Emergency Action:
  - Deploy predictive analytics to identify secondary risks (e.g., aftershocks, disease outbreaks) and prioritize mitigation efforts.




 Use Al-driven forecasts to guide resource allocation for recovery operations (e.g., rebuilding infrastructure in high-risk areas).

### FUTURE TRENDS IN AI FOR EMERGENCY MANAGEMENT

#### **AI-Driven Resource Allocation During Emergencies**

- Next Steps:
  - Implement AI-powered tools for optimizing resource distribution (e.g., food, medical supplies) based on real-time needs assessments.
  - Test algorithms that prioritize aid delivery to vulnerable populations during crises.
  - Build interagency platforms powered by AI to streamline coordination between federal, state, and local governments.
- Immediate Post-Emergency Action:
  - Use AI systems to track the effectiveness of resource allocation during the emergency and adjust distribution plans accordingly.



# QUESTIONS

Contact info:

Sarah K. Miller, PhD, CEM

<u>linkedin.com/in/skmiller</u>

Special thanks to Ryan Rockabrand, PhD, CEM for his contributions.

